M1.(a) C.
Ignore name of organ
(b) E .

Ignore name of organ
(c) 1. Active site (of enzyme) has (specific) shape / tertiary structure / active site complementary to substrate / maltose;

Reject active site on substrate.
Must have idea of shape
Assume "it" = maltase
Accept (specific) 3D active site
Reject has same shape
2. (Only) maltose can bind / fit;

Accept "substrate" for "maltose"
3. To form enzyme substrate complex.

Accept E-S complex

M2.(a) Accept three suitable suggestions:

1. (Lactase / beads) can be reused / not washed away;
2. Accept lactase / beads not wasted
3. Less lactase used is insufficient
4. No need to remove from milk;
5. Accept lactase not present in milk.
6. Allows continuous process;
7. The enzyme is more stable;
8. Avoid end-product inhibition.

Ignore ref to SA
(b) 1. (Lactose hydrolysed to) galactose and glucose;
2. (So) more sugar molecules;
2. Idea of more sugars essential
3. (So) more / different receptors stimulated / sugars produced are sweeter (than lactose).

M3.(a) 1. Large / dense / heavy cells;
2. Form pellet / move to bottom of tube (when centrifuged);
3. Liquid / supernatant can be removed.

Must refer to whole cells.
(b) Break down cells / cell parts / toxins.

Idea of 'break down / digestion' needed, not just damage
(c) 1. To stop / reduce them being damaged / destroyed / killed;

Reject (to stop) bacteria being denatured.
2. By stomach acid.

Must be in context of stomach.
(d) 1. More cell damage when both present / A;
2. Some cell damage when either there on their own / some cell damage in B and C;

MP1 and MP2 - figures given from the graph are insufficient.
3. Standard deviation does not overlap for A with B and C so difference is real;

MP3 and MP4 both aspects needed to gain mark.
4. Standard deviations do overlap between B and C so no real difference.

MP3 and MP4 accept reference to significance / chance for 'real difference'
(e) 1. Enzyme (a protein) is broken down (so no enzyme activity);

Accept hydrolyse / digested for 'broken down'.
2. No toxin (as a result of protein-digesting enzyme activity);

Must be in the correct context.
3. (So) toxin is protein.

This must be stated, not inferred from use of 'protein-digesting enzyme'.

M4.(Maintaining constant pH to avoid)

1. Named protein / enzyme (in blood) sensitive to / affected by change in pH ;

Accept converse for MP2 and MP3.
Named example should be a protein that might be affected (by change in pH) eg haemoglobin, carrier protein in plasma membrane.
Accept 'change in H^{+}concentration' for 'change in pH^{\prime} '.
2. (Resultant) change of charge / shape / tertiary structure;

The change in charge idea relates to the enzyme / protein and not the blood (plasma) or red blood cells.
'Denaturation' alone is insufficient.
3. Described effect on named protein or enzyme.
e.g. less oxygen binds with haemoglobin / less transport across membranes / fewer substrates can fit active site / fewer enzyme-substrate complexes.

Idea of 'less' or 'fewer' required. Ignore suggestion of 'no' or 'none'.

M5.(a) 1. Inhibition;
Accept either competitive or non-competitive inhibition or a description of either.
2. Changes tertiary structure (of enzyme);
3. Changes shape of / blocks active site (of enzyme);

The active site must be in the context of the enzyme / cytochrome oxidase.
4. Enzyme cannot bind to its substrate / no enzyme-substrate complex formed.

Accept 'ES'. Accept 'substrate cannot attach to enzyme'.
3 max
(b) (Antidote reacts with / binds to cyanide) so cyanide cannot bind to enzyme / cytochrome oxidase
OR
(Antidote reacts with / binds to cyanide) so causing cyanide to be released from the enzyme / cytochrome oxidase.

Key idea is how the antidote affects the cyanide.
(c) (i) 1. $\mathbf{A}+\mathbf{C}+\mathbf{E} /$ all liver (trials)
2. $\quad \mathbf{B}+\mathbf{D}+\mathbf{F} /$ all kidney (trials)
3. $\mathbf{D}+\mathbf{E} /$ all rat (trials);;

Accept a description of any trial letter.
All 3 groups correct $=2$ marks.
Any 2 groups correct = 1 mark.
1 group / no groups correct $=0$ mark.
(ii) 1. Cyanide reduces oxygen use / rate of respiration in \mathbf{A} and \mathbf{B} / in both
OR
as concentration of cyanide increases, the use of oxygen decreases in both;
Accept use of letters or description of the animal and organ
Reference to 'both', in some way, is required.
2. Greater effect of cyanide (on oxygen use) on sheep kidney / B than on sheep liver / A;
Comparison required in the statement. The statement should not be inferred from MP3.
3. Appropriate calculations of mean oxygen use from the data E.g. 1 liver falls by 74% whereas kidney falls by 87%

OR
liver falls to 0.26 / to 26% whereas kidney falls to 0.13 / to 13% E.g. 2 liver falls by $2.0(\mathrm{au})$ whereas kidney falls by $12.2(\mathrm{au})$;

Check correct calculations using the data but a comparison must be shown. Accept other calculations using the data.
(iii) 81(\%);

Correct answer = 2 marks.
Allow 1 mark for either:
Showing 8.1 divided by 10 or answer of 19(\%). Ignore '+' or '-' in showing the difference.

M6.(a) Concentration of substrate solution / of enzyme solution / pH.
(b) 1. $2.5 / 0.04$;

1 mark for correct value
2. $\mathrm{g} \mathrm{dm}^{-3}$ minute $^{-1} / \mathrm{g} \mathrm{dm}^{-3} \mathrm{~s}^{-1}$;

1 mark for related unit
(c) 1. Initial rate of reaction faster at $37^{\circ} \mathrm{C}$;
2. Because more kinetic energy;
3. So more E-S collisions / more E-S complexes formed;
4. Graph reaches plateau at $37^{\circ} \mathrm{C}$;
5. Because all substrate used up.

Allow converse for correct descriptions and explanations for curve at $25^{\circ} \mathrm{C}$
(b) 1. Thymine $18(\%)$;
2. Guanine 32 (\%).
(c) DNA polymerase.
(d) 1. (Figure 1 shows) DNA has antiparallel strands / described;
2. (Figure $\mathbf{1}$ shows) shape of the nucleotides is different / nucleotides aligned differently;
3. Enzymes have active sites with specific shape;
4. Only substrates with complementary shape / only the 3' end can bind with active site of enzyme / active site of DNA polymerase.

