M1.(a)	C.	Ignore name of organ	1
(b)	E.	Ignore name of organ	1
(c)	1.	<u>Active site</u> (of enzyme) has (specific) shape / tertiary structure / <u>active</u> <u>site</u> complementary to substrate / maltose; <i>Reject active site on substrate.</i> <i>Must have idea of shape</i> <i>Assume "it" = maltase</i> <i>Accept (specific) 3D active site</i> <i>Reject has same shape</i>	
	2.	(Only) malt <u>o</u> se can bind / fit; Accept "substrate" for "malt <u>o</u> se"	
	3.	To form enzyme substrate complex. Accept E−S complex	3
M2. (a)	Accep	ot three suitable suggestions:	
	1.	(Lactase / beads) can be reused / not washed away:	

- 1. Accept lactase / beads not wasted
- 1. Less lactase used is insufficient
- No need to remove from milk;
 2. Accept lactase not present in milk.
- 3. Allows continuous process;
- 4. The enzyme is more stable;
- 5. Avoid end-product inhibition.

Ignore ref to SA

[5]

(b)	1. 2.	(Lactose hydrolysed to) galactose and glucose; (So) more sugar molecules; <i>2. Idea of more sugars essential</i>		
	3.	(So) more / different receptors stimulated / sugars produced are sweeter (than lactose).	2 max	[5]
M3.(a)	1. 2. 3.	Large / dense / heavy cells; Form pellet / move to bottom of tube (when centrifuged); Liquid / supernatant can be removed. <i>Must refer to whole cells.</i>	3	
(b)	Bre	eak down cells / cell parts / toxins. Idea of 'break down / digestion' needed, not just damage	1	
(c)	1.	To stop / reduce them being damaged / destroyed / killed; <i>Reject (to stop) bacteria being denatured.</i>		
	2.	By stomach acid. <i>Must be in context of stomach.</i>	2	
(d)	1.	More cell damage when both present / A;		
	2.	Some cell damage when either there on their own / some cell damage in B <u>and</u> C; <i>MP1 and MP2 – figures given from the graph are insufficient.</i>		
	3.	Standard deviation does not overlap for A with B <u>and</u> C <u>so</u> difference is real; <i>MP3 and MP4 both aspects needed to gain mark.</i>		
	4.	Standard deviations do overlap between B and C <u>so</u> no real difference.		

MP3 and MP4 accept reference to significance / chance for 'real difference'

3 max

3

[12]

- (e) 1. Enzyme (a protein) is broken down (so no enzyme activity); Accept hydrolyse / digested for 'broken down'.
 - 2. No toxin (as a result of protein-digesting enzyme activity); *Must be in the correct context.*
 - (So) toxin is protein.
 This must be stated, not inferred from use of 'protein-digesting enzyme'.

M4.(Maintaining constant pH to avoid)

 Named protein / enzyme (in blood) sensitive to / affected by change in pH;

Accept converse for MP2 and MP3.

Named example should be a protein that might be affected (by change in pH) eg haemoglobin, carrier protein in plasma membrane.

Accept 'change in H⁺ concentration' for 'change in pH'.

- (Resultant) change of charge / shape / tertiary structure; The change in charge idea relates to the enzyme / protein and not the blood (plasma) or red blood cells. 'Denaturation' alone is insufficient.
- Described effect on named protein or enzyme.
 e.g. less oxygen binds with haemoglobin / less transport across membranes / fewer substrates can fit active site / fewer enzyme-substrate complexes.

Idea of 'less' or 'fewer' required. Ignore suggestion of 'no' or 'none'.

[3]

M5.(a) 1. Inhibition;

Accept either competitive or non-competitive inhibition or a description of either.

- Changes tertiary structure (of enzyme);
 Changes shape of / blocks <u>active site</u> (of enzyme); *The active site must be in the context of the enzyme / cytochrome oxidase.* Enzyme cannot bind to its substrate / no enzyme-substrate complex formed. *Accept 'ES'. Accept 'substrate cannot attach to enzyme'.* 3 max
- (Antidote reacts with / binds to cyanide) so cyanide cannot bind to enzyme / cytochrome oxidase
 OR

(Antidote reacts with / binds to cyanide) *so* causing cyanide to be released from the enzyme / cytochrome oxidase.

Key idea is how the antidote affects the cyanide.

1

- (c) (i) 1. **A** + **C** + **E** / all liver (trials)
 - 2. $\mathbf{B} + \mathbf{D} + \mathbf{F}$ / all kidney (trials)
 - 3. D + E / all rat (trials);;
 Accept a description of any trial letter.
 All 3 groups correct = 2 marks.
 Any 2 groups correct = 1 mark.
 1 group / no groups correct = 0 mark.

- (ii) 1. Cyanide reduces oxygen use / rate of respiration in A and B / in both OR as concentration of cyanide increases, the use of oxygen decreases in both;
 Accept use of letters or description of the animal and organ Reference to 'both', in some way, is required.
 - Greater effect of cyanide (on oxygen use) on sheep kidney / B than on sheep liver / A;
 Comparison required in the statement. The statement should not be inferred from MP3.
 - Appropriate calculations of mean oxygen use from the data E.g. 1 liver falls by 74% whereas kidney falls by 87% OR liver falls to 0.26 / to 26% whereas kidney falls to 0.13 / to 13%

E.g. 2 liver falls by 2.0(au) whereas kidney falls by 12.2(au);

Check correct calculations using the data but a comparison must be shown. Accept other calculations using the data.

3

(iii) 81(%);

Correct answer = 2 marks. Allow 1 mark for either: Showing 8.1 divided by 10 or answer of 19(%). Ignore '+' or '-' in showing the difference.

> 2 [11]

1

2

M6.(a) Concentration of substrate solution / of enzyme solution / pH.

- (b) 1. 2.5 / 0.04; *1 mark for correct value*
 - 2. g dm⁻³ minute⁻¹ / g dm⁻³ s⁻¹; 1 mark for related unit

(c) 1. Initial rate of reaction faster at 37 °C;

- 2. Because more kinetic energy;
- 3. So more E–S collisions / more E–S complexes formed;
- 4. Graph reaches plateau at 37 °C;
- 5. Because all substrate used up.

Allow converse for correct descriptions and explanations for curve at 25 $^\circ\mathrm{C}$

5

1

M7.(a) Deoxyribose.

- (b) 1. Thymine 18 (%);
 - 2. Guanine 32 (%).
- (c) DNA polymerase.
- (d) 1. (**Figure 1** shows) DNA has antiparallel strands / described;
 - 2. (**Figure 1** shows) shape of the nucleotides is different / nucleotides aligned differently;
 - 3. Enzymes have active sites with specific shape;
 - 4. Only substrates with complementary shape / only the 3' end can bind with active site of enzyme / active site of DNA polymerase.

[8]

4

2

1